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Section 4.0

Steam Metabolism

4.1 Introduction

Whole stream metabolism is a measurement of ecosystem function that 
includes ecosystem-scale rates of photosynthesis (gross primary production, GPP) 
and respiration (community respiration, CR).  The relative rates of GPP and CR in an 
ecosystem identifies the basal source of energy supporting the aquatic food web: 
allochthonous (from outside the system) or autochthonous (produced within the 
system). Stream metabolism, and the calculation thereof, is based on the premise 
that changes in Dissolved oxygen (DO) concentrations—between daytime highs to 
nighttime lows—are the result of photosynthesis (biologic production of O2), 
respiration (biologic consumption of O2) and reaeration (physical exchange with the 
atmosphere), as given by the following equation:

Where:

ΔDO = Change in DO concentration 

GPP = Gross Primary Production

CR = Community Respiration

G= Reaeration x DO Deficit

Stream metabolism has been used to investigate rates of GPP and CR since 
the pioneering work of Odum (1956).  Since that time, metabolism estimation has 
become a more practical metric with the availability of high quality, relatively  low 
cost DO sensors and data loggers.  Using oxygen sensors, in situ, or “free-water” 
metabolism techniques, have a number of advantages over mesocosm experiments
as one does not have to consider container effects.  Using free-water techniques 
also avoids scaling issues and benthic substrate heterogeneity that occur with 
chamber investigations.  Free-water metabolism estimates integrate all the 
metabolic processes and surface water-benthos interactions that occur over an 
entire stream reach (Young et al. 2008, Izagirre et al. 2008).  

Aquatic ecologists have subsequently investigated both natural and 
anthropogenic controls on whole stream metabolism such as geography (Hill et al. 
2000, Bernot et al. 2010) land use practices (Young and Huryn 1999, Houser et al. 
2005) and riparian disturbance (McTammany et al. 2007). Others have investigated 
how stream metabolic rates influence ecological processes, such as nutrient 
processing (Hall and Tank 2003) and ecosystem structure (Sabater et al. 2002). 
From these relationships it has been suggested that whole stream metabolism is 
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potentially an excellent indicator of stream health because metabolism incorporates
the interactions among numerous factors that influence the chemical, physical and 
biological integrity of streams, including geomorphology, hydrology, riparian 
vegetation, in-stream vegetation, climate, biology and chemistry of an entire 
stream reach (Mulholland et al. 2005, Grace and Imberger 2006, Young et al. 2008).

We measured whole stream metabolism in 49 stream reaches along a 
gradient of ambient nutrient concentrations to evaluate the potential use of stream 
metabolism as a functional indicator of nutrient enrichment.  Accordingly, we 
compared daily rates of GPP and CR to nutrient concentrations and possible 
covariates (e.g., stream slope, shading and turbidity).  Secondly, we compared daily
rates of GPP and CR to DO criteria used by the State of Utah to assess if there were 
potentially deleterious impacts to stream biota associated with increased rates of 
GPP or CR.  Lastly, we developed multivariate models to determine the most 
important physical covariates that influence GPP and CR and built a decision making
matrix for water resource management.  

4.2 Methods

We conducted whole stream metabolism estimates independently at two 
locations at each reference site, and at two locations above and below each Publicly
Owned Treatment Works (POTW) site (Fig 2.1 Section 2).  At each site we deployed 
a water quality probe (YSI 6600V2 or 600 OMS V2) to measure dissolved oxygen 
(DO) and temperature at five-minute intervals for a minimum of 48 hours.  Solar 
radiation data were collected from the closest available weather station 
(mesowest.utah.edu).  Surface water nutrients were collected at deployment and 
retrieval and were analyzed for total nitrogen (TN) and phosphorus (TP) at the 
Aquatic Biogeochemistry Laboratory at Utah State University (Valderamma 1981).  
We calculated stream metabolism using an open water method with reaeration (K) 
as a free parameter (Hall 2011, unpublished work) based on the following equation 
derived from Van de Bogert et al. (2007) (see Table 4.1 for symbol definitions):

The model adjusts GPP and CR at each time step to fit the oxygen data using non-
linear minimization (R function nlm) of the maximum likelihood accuracy estimates. 
In this equation, K can be modeled as a free parameter from the oxygen data 
simultaneously with GPP and CR.  In rare cases where K could not be modeled 
accurately we had to constrain K with values calculated from nighttime regression 
(Grace & Imberger 2006) to improve model performance.   
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We used linear regression to
evaluate the relationship between the
nutrients (TN and TP) and the
metabolic response rates GPP and CR. 
We then used a nonparametric
deviance reduction (NDR, package 
rpart) procedure using least squares
fitting to determine significant
thresholds of TN and TP to separate
GPP and CR into distinct groups based on TN and TP concentrations (Low, Medium 
and High).  We then used ANOVAs followed by post-hoc Tukey’s Honestly Significant
Difference (HSD) to determine if there were significant differences (p<0.05) in daily 
rates of GPP and CR among the three groups.   If daily rates of GPP and CR 
significantly differed among the three groups (Low, Medium and High) then the 
threshold values that define these groups provides nutrient concentrations that are 
generally associated with increased stream metabolism.

In order to validate metabolism as a functional indicator of nutrient 
enrichment we evaluated whether metabolic rates were also associated with other 
measures of stream condition.  We used the previously established GPP and CR 
nutrient enrichment groups to define three groups where GPP and CR significantly 
differed.  We then used the same dissolved oxygen (DO) data used to calculate 
stream metabolism to calculate the percentage of time a site exceeded the daily 
minimum DO concentration observed at each location.  To provide context, the DO 
data were compared against two of Utah’s DO criteria—the daily minimum and 
minimum 30-day average—as estimates of acute and chronic effects to stream 
biota (UAC R317-2-14, www.rules.utah.gov/publicat/code.htm). Water quality 
violations were determined by assigning the appropriate DO standard to the most 
sensitive beneficial use for each water body (Table 4.2).  We binned rates of GPP 
and CR into three groups based on the median values that were observed in each of
the three nutrient groups.  We then compared these measures of oxygen standards 
among the three GPP and CR groups (Good, Fair and Poor) using an ANOVA 
(p<0.05) and a post-hoc Tukey’s HSD test.  If the GPP and CR groups are 
significantly different, in terms of minimum DO and percent DO water quality 
criteria violations, then stream metabolism indicators are directly coupled to 
measures of stream health.  Furthermore, any relationships between metabolism 
and standards violations is causal
because metabolism metrics are
calculated from changes in DO.    

To compare the relative
importance of in stream nutrients versus
other potentially compounding stream
characteristics on controlling daily rates
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Table 4.1.  Definitions of symbols in 
equation 2.

Table 4.2.  Minimum and 30-day average 
dissolved oxygen standards listed by 
aquatic life beneficial use (UAC R317-2-14).
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of GPP and CR, we used multivariate Random Forest analyses (Breiman 2001, R 
package randomForest).  We compared available data for 20 physical factors that 
are known to—or have been suggested to— control whole stream metabolism 
obtained from GIS (USGS StreamStats), on-site physical habitat surveys (USEPA 
2009), and water quality samples (Appendix A).  We ran random forest regression 
on all variables and then selected the best performing variables (based on percent 
increase of mean square error) and re-ran the analyses to create the most 

parsimonious model possible.  If the best subset
of variables random forest model performed as 
well as the all variables random forest model 
(based on the pseudo-r2 fitness statistic) then 
we considered the best subset model 
successful.  The goal of this subset model was 
to find a few important variables that controlled 
GPP and CR that could be collected along with 
nutrients to increase confidence in decision 
making for impairments. All analyses were 
conducted in R v2.15.0 (R Core Development 
Team, 2012).

4.3 Results

Early exploratory analyses revealed 
metabolism rates were suppressed at highly 
turbid sites as were relationships between 
nutrients and rates of GPP and CR.  Distributions
of turbidity data revealed five highly turbid 
outliers with a turbidity of greater than 75 ntu.  
These outliers were excluded from all 
subsequent analyses.  Nevertheless, a broad 
nutrient gradient (TN 0.10-14.37 mg/l and TP 
0.002-7.65 mg/l) remained at the 44 stream 
reaches evaluated for all subsequent analyses.  
Future research will be required to determine if 
it is possible to develop defensible metabolism 
indicators for highly turbid streams.

We ran simple linear regression across all
remaining sites (n=44) to determine the 
relationship between nutrients (TN and TP) and 
functional responses (GPP and CR (g 
02/m2/day)).  Across all sites GPP was positively 
related to both TN (r2 = 0.303, p<0.001, Fig 
4.1A) and TP (r2 = 0.372, p<0.001 Fig 4.1B).  CR

Section 4 Stream Metabolism
Fig 4.1.  Linear Regression analysis 
between gross primary production 
(GPP) and total nitrogen (TN) (A) and 
total phosphorus (TP)(B) and 
between Community respiration (CR) 
and TN (C) and TP (D).
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was more strongly related to nutrients than GPP for both TN (r2 = 0.471, p<0.001, 
Fig 4.1C) and TP (r2 = 0.485, p<0.001, Fig 4.1D).   

Nutrient Thresholds.  We used nonparametric deviance reduction (NDR, 
Qian et al. 2003) models to determine thresholds of TN and TP that best divide GPP 
and CR into relatively homogenous groups.  The models identified three distinct 
groups with differing TN and TP concentrations (hereafter Low, Medium and High 
groups, Table 3).  TN and TP nutrient groups generally corresponded with measures 
of stream metabolism.   Among all sites GPP and CR rates differed among the three 
nutrient groups for both TN (ANOVA, p<0.001) and TP (ANOVA, p<0.001)(Fig 4.2).  
Mean GPP rates differed among both TN nutrient groups (Low TN=2.43±3.27 
(standard deviation), Medium =6.57±4.9, High=13.19±2.59) as well as TP groups 
(TP-GPP rates Low=3.62±4.74, Medium =7.48±4.75, High=13.86±2.29) (Fig 4.2).  
CR daily rates also differed among nutrient groups established for TN (TN-CR rates 

Low=2.05±2.28, Medium =5.78±3.29, High=14.35±9.35) and TP concentrations 
(TP-CR Low= 3.13± 3.81, Medium =6.05±2.31, High=19.66±9.25) (Fig 4.2).  The 
breakpoints in CR based on TN and TP that were often, but not always, identical to 
those for GPP.  However, differences among GPP groups are probably being driven 
by the low nutrient group (Tukey’s post hoc tests) for both TN and TP.  Similarly CR 
differences seem to be a result of the small low nutrient group for TP, whereas each
of the TN nutrient groups had distinctly different CR rates (Fig 4.2).

Metabolism Thresholds.  Daily stream metabolic rates corresponded 
closely with the frequency of DO water quality criteria violations.  We organized 
sites into three groups with differing GPP and CR rates (hereafter Good, Fair and 
Poor, Table 3) based on the differences in metabolic rates among nutrient groups. 
Overall, we found significant among-group differences in minimum daily DO 
concentration for GPP and CR (ANOVA, GPP p<0.001 and CR p<0.001).  For GPP, we
found significant differences in minimum DO concentrations between the GPP Good 
and Fair groups (Tukey’s HSD p<0.001) and between the Good and Poor GPP groups
(p<0.001), whereas there was no significant difference between the Fair and Poor 
GPP groups (p=0.06).  We found the same pattern among the CR groups where 
Good and Fair (p<0.001) and Good and Poor (p<0.001) but no difference between 
Fair and Poor groups (p=0.98).   
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 We found significant differences among GPP and CR groups and relative 
frequency of samples that 
exceeded minimum DO water 
quality criteria (ANOVA, GPP 
p<0.001 and ER p=0.018).  
For GPP, we found these 
exceedences differed between 
GPP Good and Fair (Tukey’s 
HSD p=0.001) and the Good 
and Poor GPP groups (p=0.02),
whereas no significant 
difference were observed 
between the Fair and Poor GPP
groups (p=0.06).  We found 
slightly different pattern 
among the CR groups where 
Good and Fair were also 
significantly different 
(p=0.03), but the Good and 
Poor (p=0.12) and the Fair and

Poor groups (p=0.83) showed no significant differences.  The Fair and Poor GPP and 

CR groups had a number of sites with exceedences, but also a large number with no
exceedences, which lead to large within-group variation in minimum DO criteria 
violations (Fig 4.3). 

In order to estimate the chronic effects of low DO we assessed the 
relationship among CR and GPP rates and the frequency of DO observations that fell
below the 30-day average DO criterion assigned to the beneficial use of each site.  

Section 4 Stream Metabolism

Fig.4.2.  Bar chart comparing daily rates of GPP 
(green) and CR (red) among low, medium and high 
concentration sites for TN and TP.  Thresholds for 
groups are shown in Table 2.  Letters above bars 
indicate significant differences (Tukey’s HSD 
p<0.05)  

Fig 4.3.  Comparisons of three measure of oxygen dynamics under different rates of GPP 
and CR(Good, Fair, Poor, Table 2).  Lower case letters indicate significant differences of 
GPP groups and upper case indicates significant difference of CR groups determined by an 
ANOVA and post-Hoc Tukey’s HSD.  Error bars are standard deviation.  
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We found significant differences among GPP and CR groups and percentage of 
samples that exceeded the 30- day average minimum DO water quality standards 
(ANOVA, GPP p<0.001 and CR p=0.018).  With GPP we found significant differences 
between Good and Fair groups (Tukey’s HSD p<0.001) and the Good and Poor 
groups (p<0.02), whereas we found no significant difference between the Fair and 
Poor GPP groups (p=0.26).  We found a similar relationship with the CR groups 
where Good and Fair and Good and Poor were significantly different (p<0.001 and 
p<0.001), but the Fair and Poor showed no significant difference (p=0.25, Fig 4.3).  

 Physical Covariates.  We ran random forest regression models separately 
for GPP and CR with 20 variables (Appendix A) from water quality samples, GIS 
analyses and site specific habitat metrics.  With all variables our model performed 
well in predicting GPP (mean squared residuals = 12.7, pseudo r2=0.54) and CR 
(mean squared residuals=18.3, pseudo r2=0.45, ntree=50,000).  Four of the top five
predictor variables were the same for GPP and CR as measured by increases of 
mean square error (MSE) resulting from randomly assigning values among 
observations.  The top predictor variables for GPP were stream slope (MSE=103.9), 
stream shading (103.3), basin slope (74.9), TN (73.4) and TP (72.6).  We found 
similar variables that were important for predicting CR including shading 
(MSE=70.2), TN (68.9), stream slope (63.2), mean stream depth (53.8) and TP 
(51.4).  We ran random forest regression again with only the top four variables that 
were found in GPP and CR to compare overall model performance (stream slope, 
shading, TN and TP).  We found that the model performed just as well with only the 
top four variables for GPP (mean squared residuals = 13.1, pseudo r2=0.53) and CR 
(mean squared residuals = 16.2, pseudo r2=0.51).  

To verify the results of our random forest model we ran simple linear 
regression between major covariates and GPP and CR.  There was a significant 
explanatory relationship between channel slope (%) and GPP (linear regression, 
r2=0.472) and CR (r2=0.436, data not shown).  We ran NDR with GPP and CR and 
slope as the explanatory variable and we did find significant thresholds at ~1% 
slope.  Channel shading measured as percent coverage (for methods see USEPA 
2009, page 150, center densitometer readings ) had a significant linear relationship 
with daily rates of GPP (r2=0.207) and CR (r2=0.156, data not shown).  Using NDR 
we found a distinct threshold among rates of GPP and CR where shading equals ~ 
11%.  We found that streams with channel shading less than 11% had greater mean
daily rates of GPP (9.3±5.6 to 3.99±4.1) and CR (8.10±5.5 to 4.31±4.1).

4.4 Discussion
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Nutrient Thresholds.  Using daily rates of GPP and CR we found two 
thresholds of TN and TP that can be used as indicators of where nutrient enrichment
generally alters stream metabolic functions (Table 4.3).  TN values of 0.24 mg/L and
1.28 mg/L and TP values of 0.02 mg/L and 0.09 mg/L separate low, medium, and 
high rates of both GPP and CR.  These thresholds can be used by resource 
managers to evaluate where more intensive, follow-up sampling efforts are 
warranted.  These values, along with other structural and functional indicators will 
be used to create multiple lines of evidence of nutrient concentrations that can be 
developed into Statewide numeric nutrient criteria (See Section 8). We did not find 
many significant trends among common stream metabolism metrics such as 
production to respiration ratios (P:R) or net ecosystem metabolism (NEM, 
production-respiration).  We did notice that as total phosphorus concentrations 
increased at a site NEM became more negative (data not shown).  This same trend 
was not seen with total nitrogen concentrations suggesting an increasing 
heterotrophic response, relative to autotrophic response, to increasing phosphorus.

Metabolism Thresholds.  One of the most direct and well known pathways 
between excess nutrients and deleterious effects on stream biota is through 
altering diel oxygen dynamics via increased autotrophic or heterotrophic 
productivity.  Stream metabolism is an ideal metric to evaluate those effects 
because it directly quantifies these processes. Toward that end, by statistically 
binning daily rates of metabolism into three categories we were able to show a 
significant difference among the absolute minimum DO observed among sites and 
percent of times that DO observations were lower than minimum DO criteria (Fig 
4.3).

Minimum DO standards are developed to protect aquatic life for each of the 
beneficial uses in the State.  The three beneficial uses of streams used in this study 
were coldwater fisheries (3A), warmwater fisheries (3B) and non-game fish fisheries 
(3C) (UAC R317-2-6).  Each of these beneficial uses has a different value for 
minimum DO concentrations based on the sensitivity of fishes, and other organisms 
in their food web, that are found in each type of fishery.  Two sites were assigned 
with a beneficial use of severely habitat limited (3E) which does not have any DO 
standards and were given  the least restrictive DO standards (3C beneficial use) for 
the purpose of these comparisons.  The minimum DO water quality standard is the 
acute value where at any time the concentration in a stream falls below this value 
there would be a water quality violation.  In our dataset only 11% of the sites 
sampled had a violation in the minimum DO standard criterion.  However, these 
data may underestimate DO violations because our data were collected in the 
summer and others have found that acute anoxic conditions occur in the autumn 
following algae senescence (Suplee, 2012).

Another way to examine the DO criteria is to look at criteria established to 
protect against chronic effects from low DO.  We did this by comparing the 
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percentage of times DO fell below the 30-day average minimum DO standard 
assigned to each site.  We acknowledge that these short-term observations (48-72 
hour) are not representative of 30-day averages, so some sites that are fully 
attaining may occasionally fall below these criteria without harming aquatic life.   
UDWQ currently uses the 30-day average for assessment purposes because it is 
assumed that this value is more reflective of long-term conditions, so under 
following these conditions high rates of GPP and CR would correlate strongly with 
impaired waters.  At a minimum, these data suggest that sites with atypically high 
rates of summertime GPP and CR warrant more intensive investigations into 
deleterious effects to stream biota.

Our values of GPP (6.0 and 10.0 gO2/m2/day) and CR (5.0 and 9.0 gO2/m2/day)
are similar to the suggested rates of GPP and CR proposed by Young et al. (2008) as
indicators of river health in New Zealand rivers (7.0 and 9.5 gO2/m2/day GPP and CR,
respectively).  Young and others gathered data from numerous published studies 
between 1990 and 2006 and then derived thresholds using observations obtained 
from reference sites to estimate unaltered conditions.  Our stressor-response 
approach along with Young’s reference condition approach are part of the growing 
literature showing multiple lines of evidence that stream metabolism measures are 
useful measures of stream condition.  

Physical Covariates.  We found that nutrients were unrelated to metabolic 
rates at sites where turbidity was greater than 75 ntu, which likely stems from a 
lack of light reaching the stream benthos.  We suggest that stream metabolism is 
not an appropriate functional indicator to be used at these sites. Nevertheless, at 
these highly-turbid sites then mean TN (2.41 mg/l) and TP (0.36 mg/l) 
concentrations were much greater than other States have proposed for numeric 
nutrient criteria.  With nutrient concentrations that exceed even the highest 
numeric standards nationally, it is unlikely that a functional indicator would be 
needed to designate impairment at these extremely turbid sites.  Secondly, sites 
with greater than 75 NTU comprise less than three percent of the total stream miles
in Utah (DWQ unpublished data).  With only a small number of sites that exceed the
turbidity criterion for ecosystem metabolism estimation other functional or 
structural indicators of nutrient enrichment could be used to evaluate these 
waterbodies for nutrient pollution.  These data also highlight the importance of 
understanding the relative influence of multiple stressors when mitigating for 
aquatic life degradation, because despite the high concentration of nutrients 
observed at these sites, excess sedimentation may be a more immediate concern.

To apply the results of our random forest model for management applications
we used nonparametric deviance reduction with GPP and CR and physical 
parameters from random forest models as the explanatory variable to develop a 
threshold.   We found a significant threshold where below 1% slope sites had higher 
rates of GPP and CR than those above the threshold.  Although this relationship is 
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statistically significant slope was also strongly related to both TN (Pearson 
correlation r=-0.603) and TP (r=-0.617, data not shown).  This relationship is not 
surprising considering that anthropogenic activities that are known sources of 
nutrients, including agricultural activities and urban discharges, are more likely to 
be concentrated at lower gradient, where most of the population resides. The 
physical parameter we measured that seems to be the clearest covariate 
influencing stream metabolism appears to be channel shading.  Channel shading 
was also only weakly correlated to in stream TN (Pearson correlation r=-0.245) and 
TP(r=-0.221, data not shown) indicating that shading effects on GPP and CR are 
likely not to be confused with those of nutrients.  At first it appears that shading 
having an effect on community respiration is counterintuitive.  But in autotrophic 
systems a large majority of respiration is from autotrophs, in these systems shading
would suppress GPP and CR.  

Our results indicate that the physical parameters channel slope and shading 
have the greatest influence on GPP and CR are in agreement with a number of 
stream metabolism studies.  It has been shown that high flow events reduce daily 
rates of GPP and CR mainly by exporting organic matter accumulated in the stream 
(Uehlinger et al. 2003, Acuna et al. 2004).  Streams with high slope likely 
accumulate less organic matter and behave like lower gradient streams after high 
flows.  Hill and Dimick (2002) tested the hypothesis that seasonal rates of GPP were 
attributed to irradiance at the stream surface decreasing due to leaf emergence and
not simply temperature.  They artificially manipulated shading and found that 
periphyton photosynthesis declined as irradiance decreased.  Bott et al. (2006) and 
Bernot et al (2010) found that photosynthetic radiation (PAR) was a stronger factor 
influencing than any measurement of watershed land use.  These studies indicate 
that even under heavily modified land uses (agriculture or urban) GPP can remain 
relatively low if a healthy riparian corridor is maintained.  Or conversely, in 
ecosystems with little natural riparian vegetation GPP would be highly responsive to
anthropogenic increases in nutrients.          

Using the significant covariates detected through random forest regression 
analysis we developed a framework to facilitate covariate effects into management 
decision making processes (Fig 4.4).  We suggest using slope and shading to 
evaluate Fair GPP and CR groups.  The Fair groups for daily GPP and CR rates have 
slightly increased daily rates over the Good GPP and CR sites but are not large 
enough to always cause deleterious impacts on minimum oxygen concentrations.  
We can use our covariates to determine the chance that streams are in this Fair 
group because of natural intrinsic factors or because of increased nutrient 
concentrations.  We suggest for sites in the Fair GPP and CR categories including 
slope and shade into the decision making process.  Sites where slope is <1% AND 
shading is <11% then it is likely that increased rates of GPP and CR are natural.  We
would classify these sites as low priority sites.  Sites where slope is <1% OR shading
is less than <11% then there is an intermediate chance that increased rates of GPP 
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and CR are natural.  These sites would be classified as moderate priority sites.  
Finally sites in the Medium group where slope is >1% and shading is >11% likely 
have increased GPP and CR from increased nutrient concentrations.  These sites 
would be classified as high priority for sites in the Medium GPP and CR groups (Fig 
4.4).           

Summary and Recommendations

In our study we quantified the relationship between nutrients and stream 
metabolism and between stream metabolism and in stream minimum dissolved 
oxygen criteria developed by the Utah Division of Water Quality.  We were able to 
develop thresholds of nutrient concentrations that can be used to screen 
waterbodies for the potential of having increased rates of GPP and CR.  Once these 
nutrient thresholds are exceeded the Utah DWQ can return to a waterbody and 
deploy water quality probes and calculate stream metabolism to assess the impacts
of nutrient pollution on the stream using the thresholds we developed.  Because CR 

Section 4 Stream Metabolism

Fig 4.4. Water quality scoring system for evaluating stream metabolism 
rates (gross primary production and community respiration) in Utah’s 
wadeable streams.  We include measurements of physical covariates to 
help interpret moderately elevated metabolic rates.   
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is the process that produces low oxygen conditions dangerous to biota were are 
able to connect nutrient concentrations to aquatic life through the processes of 
stream metabolism.  
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Appendix A.  List of 20 variables used in initial evaluation of physical covariates 
with random forest regression models.  Importance of variables was evaluated 
using the % increase Mean Squared Error (MSE).  Higher MSE indicates that 
when values in a variable were randomized the model performance declined.  
Data were obtained from the Utah State University Aquatic Biogeochemistry 
Laboratory (USU ABL), Utah Unified Public Health laboratories (UPHL), U.S. 
Geological Survey Stream Stats program (USGS) or the Utah Division of Water 
Quality Comprehensive Assessment of Stream Ecosystems program (UDWQ).   
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